
NAG Fortran Library Routine Document

D03EBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D03EBF uses the Strongly Implicit Procedure to calculate the solution to a system of simultaneous
algebraic equations of five-point molecule form on a two-dimensional topologically-rectangular mesh.
(‘Topological’ means that a polar grid, for example ðr; �Þ, can be used, being equivalent to a rectangular
box.)

2 Specification

SUBROUTINE D03EBF(N1, N2, N1M, A, B, C, D, E, Q, T, APARAM, ITMAX,
1 ITCOUN, ITUSED, NDIR, IXN, IYN, CONRES, CONCHN,
2 RESIDS, CHNGS, WRKSP1, WRKSP2, WRKSP3, IFAIL)

INTEGER N1, N2, N1M, ITMAX, ITCOUN, ITUSED, NDIR, IXN, IYN,
1 IFAIL
real A(N1M,N2), B(N1M,N2), C(N1M,N2), D(N1M,N2), E(N1M,N2),

1 Q(N1M,N2), T(N1M,N2), APARAM, CONRES, CONCHN,
2 RESIDS(ITMAX), CHNGS(ITMAX), WRKSP1(N1M,N2),
3 WRKSP2(N1M,N2), WRKSP3(N1M,N2)

3 Description

Given a set of simultaneous equations

Mt ¼ q ð1Þ
(which could be nonlinear) derived, for example, from a finite difference representation of a two-
dimensional elliptic partial differential equation and its boundary conditions, the routine determines the
values of the dependent variable t. q is a known vector of length n1 � n2 and M is a square ðn1 � n2Þ by
ðn1 � n2Þ matrix.

The equations must be of five-diagonal form:

aijti;j�1 þ bijti�1;j þ cijtij þ dijtiþ1;j þ eijti;jþ1 ¼ qij

for i ¼ 1; 2; . . . ; n1; j ¼ 1; 2; . . . ; n2, provided cij 6¼ 0:0. Indeed, if cij ¼ 0:0, then the equation is assumed

to be

tij ¼ qij:

For example, if n1 ¼ 3 and n2 ¼ 2, the equations take the form:

c11 d11 e11
b21 c21 d21 e21

b31 c31 e31
a12 c12 d12

a22 b22 c22 d22
a32 b32 c32

2
6666664

3
7777775

t11
t21
t31
t12
t22
t32

2
6666664

3
7777775
¼

q11
q21
q31
q12
q22
q32

2
6666664

3
7777775
:

The system is solved iteratively, from a starting approximation tð1Þ, by the formulae

D03 – Partial Differential Equations D03EBF

[NP3546/20A] D03EBF.1



rðnÞ ¼ q �MtðnÞ

MsðnÞ ¼ rðnÞ

tðnþ1Þ ¼ tðnÞ þ sðnÞ:

Thus rðnÞ is the residual of the nth approximate solution tðnÞ, and sðnÞ is the up-date change vector. The
calling program supplies an initial approximation for the values of the dependent variable in the array T,
the coefficients of the five-point molecule system of equations in the arrays A, B, C, D and E, and the
source terms in the array Q. The routine derives the residual of the latest approximate solution and then
uses the approximate LU factorization of the Strongly Implicit Procedure with the necessary acceleration
parameter adjustment by calling D03UAF at each iteration. D03EBF combines the newly derived change
with the old approximation to obtain the new approximate solution for t. The new solution is checked for
convergence against the user-supplied convergence criteria and if these have not been achieved the iterative
cycle is repeated. Convergence is based on both the maximum absolute normalised residuals (calculated
with reference to the previous approximate solution as these are calculated at the commencement of each
iteration) and on the maximum absolute change made to the values of t.

Problems in topologically non-rectangular regions can be solved using the routine by surrounding the
region by a circumscribing topological rectangle. The equations for the nodal values external to the region
of interest are set to zero (i.e., cij ¼ tij ¼ 0) and the boundary conditions are incorporated into the

equations for the appropriate nodes.

If there is no better initial approximation when starting the iterative cycle, an array of all zeros can be used
as the initial approximation.

The routine can be used to solve linear elliptic equations in which case the arrays A, B, C, D, E and Q are
constants and for which a single call provides the required solution. It can also be used to solve nonlinear
elliptic equations in which case some or all of these arrays may require updating during the progress of the
iterations as more accurate solutions are derived. The routine will then have to be called repeatedly in an
outer iterative cycle. Dependent on the nonlinearity, some under relaxation of the coefficients and/or
source terms may be needed during their recalculation using the new estimates of the solution.

The routine can also be used to solve each step of a time-dependent parabolic equation in two space
dimensions. The solution at each time step can be expressed in terms of an elliptic equation if the Crank–
Nicolson or other form of implicit time integration is used.

Neither diagonal dominance, nor positive definiteness, of the matrix M formed from the arrays A, B, C, D,
E is necessary to ensure convergence.

For problems in which the solution is not unique in the sense that an arbitrary constant can be added to the
solution, for example Laplace’s equation with all Neumann boundary conditions, a parameter is
incorporated so that the solution can be rescaled by subtracting a specified nodal value from the whole
solution t after the completion of every iteration to keep rounding errors to a minimum for those cases
when the convergence is slow.

4 References

Jacobs D A H (1972) The strongly implicit procedure for the numerical solution of parabolic and elliptic
partial differential equations Note RD/L/N66/72 Central Electricity Research Laboratory

Stone H L (1968) Iterative solution of implicit approximations of multi-dimensional partial differential
equations SIAM J. Numer. Anal. 5 530–558

5 Parameters

1: N1 – INTEGER Input

On entry: the number of nodes in the first co-ordinate direction, n1.

Constraint: N1 > 1.

D03EBF NAG Fortran Library Manual

D03EBF.2 [NP3546/20A]



2: N2 – INTEGER Input

On entry: the number of nodes in the second co-ordinate direction, n2.

Constraint: N2 > 1.

3: N1M – INTEGER Input

On entry: the first dimension of the arrays A, B, C, D, E, Q, T, WRKSP1, WRKSP2 and WRKSP3
as declared in the (sub)program from which D03EBF is called.

Constraint: N1M � N1.

4: A(N1M,N2) – real array Input

On entry: Aði; jÞ must contain the coefficient of the ‘southerly’ term involving ti;j�1 in the ði; jÞth
equation of the system (1), for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2. The elements of A for j ¼ 1 must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
rectangle.

5: B(N1M,N2) – real array Input

On entry: Bði; jÞ must contain the coefficient of the ‘westerly’ term involving ti�1;j in the ði; jÞth
equation of the system (1), for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2. The elements of B for i ¼ 1 must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
rectangle.

6: C(N1M,N2) – real array Input

On entry: Cði; jÞ must contain the coefficient of the ‘central’ term involving tij in the ði; jÞth
equation of the system (1), for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2. The elements of C are checked to
ensure that they are non-zero. If any element is found to be zero, the corresponding algebraic
equation is assumed to be tij ¼ qij. This feature can be used to define the equations for nodes at

which, for example, Dirichlet boundary conditions are applied, or for nodes external to the problem
of interest, by setting Cði; jÞ ¼ 0:0 at appropriate points, and the corresponding value of Qði; jÞ to
the appropriate value, namely the prescribed value of Tði; jÞ in the Dirichlet case or zero at an
external point.

7: D(N1M,N2) – real array Input

On entry: Dði; jÞ must contain the coefficient of the ‘easterly’ term involving tiþ1;j in the ði; jÞth
equation of the system (1), for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2. The elements of D for i ¼ N1 must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
rectangle.

8: E(N1M,N2) – real array Input

On entry: Eði; jÞ must contain the coefficient of the ‘northerly’ term involving ti;jþ1 in the ði; jÞth
equation of the system (1), for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2. The elements of E for j ¼ N2 must be
zero after incorporating the boundary conditions, since they involve nodal values from outside the
rectangle.

9: Q(N1M,N2) – real array Input

On entry: Qði; jÞ must contain qij for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2, i.e., the source term values at the

nodal points for the system (1).

10: T(N1M,N2) – real array Input/Output

On entry: Tði; jÞ must contain the element tij of the approximate solution to the equations supplied

by the calling program as an initial starting value, for i ¼ 1,2,...,N1; j ¼ 1,2,...,N2.

If no better approximation is known, an array of zeros can be used.

On exit: the solution derived by the routine.

D03 – Partial Differential Equations D03EBF

[NP3546/20A] D03EBF.3



11: APARAM – real Input

On entry: the iteration acceleration factor. A value of 1.0 is adequate for most typical problems.
However, if convergence is slow, the value can be reduced, typically to 0.2 or 0.1. If divergence is
obtained, the value can be increased, typically to 2.0, 5.0 or 10.0.

Constraint: 0:0 < APARAM � ððN1� 1Þ2 þ ðN2� 1Þ2Þ=2:0.

12: ITMAX – INTEGER Input

On entry: the maximum number of iterations to be used by the routine in seeking the solution. A
reasonable value might be 30 if N1 ¼ N2 ¼ 10 or 100 if N1 ¼ N2 ¼ 50.

13: ITCOUN – INTEGER Input/Output

On entry: on the first call of D03EBF, ITCOUN must be set to 0. On subsequent entries, its value
must be unchanged from the previous call.

On exit: its value is increased by the number of iterations used on this call (namely ITUSED). It
therefore stores the accumulated number of iterations actually used. For subsequent calls for the
same problem, i.e., with the same N1 and N2 but possibly different coefficients and/or source terms,
as occur with nonlinear systems or with time-dependent systems, ITCOUN is the accumulated
number of iterations. This applies to the second and subsequent calls to D03EBF. In this way a
suitable cycling of the sequence of iteration parameters is obtained in the calls to D03UAF.

14: ITUSED – INTEGER Output

On exit: the number of iterations actually used on that call.

15: NDIR – INTEGER Input

On entry: indicates whether or not the system of equations has a unique solution. For systems
which have a unique solution, NDIR must be set to any non-zero value. For systems derived from,
for example, Laplace’s equation with all Neumann boundary conditions, i.e., problems in which an
arbitrary constant can be added to the solution, NDIR should be set to 0 and the values of the next
two parameters must be specified. For such problems the routine subtracts the value of the function
derived at the node (IXN, IYN) from the whole solution after each iteration to reduce the possibility
of large rounding errors. The user must also ensure that for such problems the appropriate
consistency condition on the source terms Q is satisfied.

16: IXN – INTEGER Input

On entry: IXN is ignored unless NDIR is equal to zero, in which case it must specify the first index
of the nodal point at which the solution is to be set to zero. The node should not correspond to a
corner node, or to a node external to the region of interest.

17: IYN – INTEGER Input

On entry: IYN is ignored unless NDIR is equal to zero, in which case it must specify the second
index of the nodal point at which the solution is to be set to zero. The node should not correspond
to a corner node, or to a node external to the region of interest.

18: CONRES – real Input

On entry: the convergence criterion to be used on the maximum absolute value of the normalised
residual vector components. The latter is defined as the residual of the algebraic equation divided
by the central coefficient when the latter is not equal to 0.0, and defined as the residual when the
central coefficient is zero.

Clearly CONRES should not be less than a reasonable multiple of the machine precision.

19: CONCHN – real Input

On entry: the convergence criterion to be used on the maximum absolute value of the change made
at each iteration to the elements of the array T, namely the dependent variable. Clearly CONCHN

D03EBF NAG Fortran Library Manual

D03EBF.4 [NP3546/20A]



should not be less than a reasonable multiple of the machine precision multiplied by the maximum
value of T attained.

Convergence is achieved when both the convergence criteria are satisfied. The user can therefore
set convergence on either the residual or on the change, or (as is recommended) on a requirement
that both are below prescribed limits.

20: RESIDS(ITMAX) – real array Output

On exit: the maximum absolute value of the residuals calculated at the ith iteration, for
i ¼ 1,2,...,ITUSED. The user who wants to know the maximum absolute residual of the solution
which is returned must calculate this in the calling program. The sequence of values RESIDS
indicates the rate of convergence.

21: CHNGS(ITMAX) – real array Output

On exit: the maximum absolute value of the changes made to the components of the dependent
variable T at the ith iteration, for i ¼ 1,2,...,ITUSED. The sequence of values CHNGS indicates the
rate of convergence.

22: WRKSP1(N1M,N2) – real array Workspace
23: WRKSP2(N1M,N2) – real array Workspace
24: WRKSP3(N1M,N2) – real array Workspace

25: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N1 < 2,
or N2 < 2.

IFAIL ¼ 2

On entry, N1M < N1.

IFAIL ¼ 3

On entry, APARAM � 0:0.

IFAIL ¼ 4

On entry, APARAM > ððN1� 1Þ2 þ ðN2� 1Þ2Þ=2:0.

IFAIL ¼ 5

Convergence was not achieved after ITMAX iterations.

D03 – Partial Differential Equations D03EBF

[NP3546/20A] D03EBF.5



7 Accuracy

The improvement in accuracy for each iteration depends on the size of the system and on the condition of
the up-date matrix characterised by the five-diagonal coefficient arrays. The ultimate accuracy obtainable
depends on the above factors and on the machine precision. The rate of convergence obtained with the
Strongly Implicit Procedure is not always smooth because of the cyclic use of nine acceleration parameters.
The convergence may become slow with very large problems, for example when N1 ¼ N2 ¼ 60. The
final accuracy may be judged approximately from the rate of convergence determined from the sequence of
values returned in CHNGS and the magnitude of the maximum absolute value of the change vector on the
last iteration stored in CHNGS(ITUSED).

8 Further Comments

The time taken by the routine per iteration is approximately proportional to N1� N2.

Convergence may not always be obtained when the problem is very large and/or the coefficients of the
equations have widely disparate values. The latter case is often associated with a near ill-conditioned
matrix.

9 Example

To solve Laplace’s equation in a rectangle with a non-uniform grid spacing in the x and y co-ordinate
directions and with Dirichlet boundary conditions specifying the function on the perimeter of the rectangle
equal to

eð1:0þxÞ=yðn2Þ � cosðy=yðn2ÞÞ:

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D03EBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N1, N2, N1M, ITMAX
PARAMETER (N1=6,N2=10,N1M=N1,ITMAX=18)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real APARAM, CONCHN, CONRES
INTEGER I, IFAIL, ITCOUN, ITUSED, IXN, IYN, J, NDIR

* .. Local Arrays ..
real A(N1M,N2), B(N1M,N2), C(N1M,N2), CHNGS(ITMAX),

+ D(N1M,N2), E(N1M,N2), Q(N1M,N2), RESIDS(ITMAX),
+ T(N1M,N2), WRKSP1(N1M,N2), WRKSP2(N1M,N2),
+ WRKSP3(N1M,N2), X(N1M), Y(N2)

* .. External Subroutines ..
EXTERNAL D03EBF

* .. Intrinsic Functions ..
INTRINSIC COS, EXP

* .. Data statements ..
DATA X(1), X(2), X(3), X(4), X(5), X(6)/0.0e0, 1.0e0,

+ 3.0e0, 6.0e0, 10.0e0, 15.0e0/
DATA Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8),

+ Y(9), Y(10)/0.0e0, 1.0e0, 3.0e0, 6.0e0, 10.0e0,
+ 15.0e0, 21.0e0, 28.0e0, 36.0e0, 45.0e0/

* .. Executable Statements ..
WRITE (NOUT,*) ’D03EBF Example Program Results’
WRITE (NOUT,*)
APARAM = 1.0e0
ITCOUN = 0
NDIR = 1
CONRES = 0.1e-5
CONCHN = 0.1e-5

D03EBF NAG Fortran Library Manual

D03EBF.6 [NP3546/20A]



* Set up difference equation coefficients, source terms and
* initial conditions.

DO 40 J = 1, N2
DO 20 I = 1, N1

IF ((I.NE.1) .AND. (I.NE.N1) .AND. (J.NE.1) .AND. (J.NE.N2))
+ THEN

* Specification for internal nodes
A(I,J) = 2.0e0/((Y(J)-Y(J-1))*(Y(J+1)-Y(J-1)))
E(I,J) = 2.0e0/((Y(J+1)-Y(J))*(Y(J+1)-Y(J-1)))
B(I,J) = 2.0e0/((X(I)-X(I-1))*(X(I+1)-X(I-1)))
D(I,J) = 2.0e0/((X(I+1)-X(I))*(X(I+1)-X(I-1)))
C(I,J) = -A(I,J) - B(I,J) - D(I,J) - E(I,J)
Q(I,J) = 0.0e0
T(I,J) = 0.0e0

ELSE
* Specification for boundary nodes

A(I,J) = 0.0e0
B(I,J) = 0.0e0
C(I,J) = 0.0e0
D(I,J) = 0.0e0
E(I,J) = 0.0e0
Q(I,J) = EXP((X(I)+1.0e0)/Y(N2))*COS(Y(J)/Y(N2))
T(I,J) = 0.0e0

END IF
20 CONTINUE
40 CONTINUE

WRITE (NOUT,*) ’Iteration Maximum Maximum’
WRITE (NOUT,*) ’ number residual change’
IFAIL = 1

*
CALL D03EBF(N1,N2,N1M,A,B,C,D,E,Q,T,APARAM,ITMAX,ITCOUN,ITUSED,

+ NDIR,IXN,IYN,CONRES,CONCHN,RESIDS,CHNGS,WRKSP1,WRKSP2,
+ WRKSP3,IFAIL)

*
WRITE (NOUT,99999) (I,RESIDS(I),CHNGS(I),I=1,ITUSED)

* Check error flag
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Table of calculated function values’
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ I 1 2 3 4 5 6’
WRITE (NOUT,*) ’ J’
DO 60 J = 1, N2

WRITE (NOUT,99998) J, (T(I,J),I=1,N1)
60 CONTINUE

ELSE
WRITE (NOUT,99997) ’Error in D03EBF IFAIL =’, IFAIL

END IF
STOP

*
99999 FORMAT (2X,I2,10X,e11.4,4X,e11.4)
99998 FORMAT (1X,I2,1X,6(F9.3,2X))
99997 FORMAT (1X,A,I4)

END

9.2 Program Data

None.

9.3 Program Results

D03EBF Example Program Results

Iteration Maximum Maximum
number residual change
1 0.1427E+01 0.1427E+01
2 0.6671E-02 0.2176E-01
3 0.8422E-03 0.1621E-02
4 0.7635E-04 0.1810E-03

D03 – Partial Differential Equations D03EBF

[NP3546/20A] D03EBF.7



5 0.5434E-05 0.1199E-04
6 0.6471E-06 0.1245E-05
7 0.5467E-07 0.1081E-06

Table of calculated function values

I 1 2 3 4 5 6
J
1 1.022 1.045 1.093 1.168 1.277 1.427
2 1.022 1.045 1.093 1.168 1.277 1.427
3 1.020 1.043 1.091 1.166 1.274 1.424
4 1.013 1.036 1.083 1.158 1.266 1.414
5 0.997 1.020 1.066 1.140 1.246 1.392
6 0.966 0.988 1.033 1.104 1.207 1.348
7 0.913 0.934 0.976 1.044 1.141 1.274
8 0.831 0.850 0.888 0.950 1.038 1.160
9 0.712 0.728 0.762 0.814 0.890 0.994

10 0.552 0.565 0.591 0.631 0.690 0.771

D03EBF NAG Fortran Library Manual

D03EBF.8 (last) [NP3546/20A]


	D03EBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N1
	N2
	N1M
	A
	B
	C
	D
	E
	Q
	T
	APARAM
	ITMAX
	ITCOUN
	ITUSED
	NDIR
	IXN
	IYN
	CONRES
	CONCHN
	RESIDS
	CHNGS
	WRKSP1
	WRKSP2
	WRKSP3
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction



